H Impala Linear Corporation

ILC803/ILC809/ILC810 Preliminary

POWERED BY IMPALA

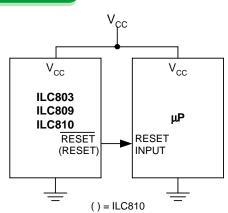
3-Pin µP Voltage Monitor

General Description

The ILC803, ILC809 and ILC810 are low cost microprocessor supervisory circuits that assert a reset if the power supply drops below a designated threshold. Several different reset thresholds are available to accommodate systems operating at 3V, 3.3V or 5V.

The <u>ILC803</u> has an open drain output stage with active low RESET output

The ILC809 has an active low $\overrightarrow{\text{RESET}}$ output, while the ILC810 offers an active high RESET output. The reset output is guaranteed to remain asserted for a minimum of 140ms after V_{CC} has risen above the designated reset threshold. The ILC803, ILC809 and ILC810 are available in either a 3-Pin SOT-23 package or a 3-Pin SC-70 packages.


Package Features

- Precision Voltage Monitor for 3V, 3.3V or 5V Power Supplies
- 6µA Supply Current
- 140ms Minimum Reset Pulse Width
- RESET Remains Valid with V_{CC} as Low as 1.4V
- Active Low Manual Reset Input
- No External Components
- 3-Pin SOT-23 Package
- 3-Pin SC-70 package option

Applications

- Critical Microprocessor Power Monitoring
- Portable Equipment
- Intelligent Instruments
- Computers & Printers, Controllers

Typical Circuit

Ordering Information

Part	Package	Temp. Range
ILC803_U	3-Lead SOT-23	-40°C to +85°C
ILC809_U	3-Lead SOT-23	-40°C to +85°C
ILC810_U	3-Lead SOT-23	-40°C to +85°C
ILC803_W	3-Lead SC-70	-40°C to +85°C
ILC809_W	3-Lead SC-70	-40°C to +85°C
ILC810_W	3-Lead SC-70	-40°C to +85°C

Place the device suffix of the desired reset threshold voltage from the table [below] in the blank to complete the part number.

					Rese
		Top View			
				1	
ND 1		GND 1			
	ILC803	3 V	ILC810	3 V	
	ILC809	3 V _{cc}	ILCOID	3 V _{CC}	
ET 2		RESET 2			
	SC-70		SOT-23		
	0010		00120		

Reset Threshold Voltage (V)	Device Suffix
4.63	L
4.38	М
4.00	J
3.08	Т
2.93	S
2.63	R

Impala Linear Corporation

Pin Package Configurations

G١

RES

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Terminal Voltage	V _{CC}	-0.3 to 6.0	V
Input Current	V _{cc}	20	mA
Output Current	RESET, RESET	20	mA
Rate of Rise	V _{cc}	100	V/µs
Operating Temperature Range	T _A	-40 to +85	°C
Storage Temperature Range		-65 to +150	°C
Lead Temperature (Soldering, 10 sec.)		300	°C
Power Dissipation ($T_A = +70^{\circ}C$)		320	mW

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Operating ranges define those limits between which the functionality of the device is guaranteed.

Electrical Characteristics

Parameter	3V for ILC8_S/T, V _{CC} = 3V for ILC8_R, T _A = Operating Ten Conditions	Min	Тур	Max	Units
Operating Voltage Range, V _{cc}	$T_A = 0^{\circ}C$ to 70°C	1.4	71	5.5	V
	$T_A = -40^{\circ}$ C to 85°C	1.6		5.5	-
Supply Current, I _{CC}	ILC803L/M/J, ILC809L/M/J, ILC810L/M/J		9	15	μA
	V _{CC} < 3.6V, ILC803R/S/T, ILC809R/S/T, ILC810R/S/T		6	10	pa .
Reset Voltage Threshold, VTH	ILC803L, ILC809L, ILC810L	4.50	4.63	4.75	V
.	ILC803M, ILC809M, ILC810M	4.25	4.38	4.50	
	ILC803J, ILC809J, ILC810J	3.89	4.00	4.10	
	ILC803T, ILC809T, ILC810T	3.00	3.08	3.15	
	ILC803S, ILC809S, ILC810S	2.85	2.93	3.00	
	ILC803R, ILC809R, ILC810R	2.55	2.63	2.70	
Reset Timeout Period, t _R		140	240	560	ms
RESET Output Voltage Low	V _{CC} = V _{TH} I _{SINK} = 1.2mA			0.3	V
(Active low ILC803 & 809) V_{OL}	V _{CC} =V _{TH} I _{SINK} = 3.2mA			0.4	V
RESET Open Drain Output Leakage Current	$V_{CC} > V_{TH} \overline{RESET}$ Deasserted			7	μA
RESET Output Voltage VOH	I _{SOURCE} = 800 μA, ILC809L/M/J	V _{CC} – 1.5			V
	I _{SOURCE} = 500 μA, ILC809R/S/T	0.8 x V _{CC}			
RESET Output Voltage, VoL	$V_{CC} = V_{TH}$ Min., $I_{SINK} = 3.2$ mA, ILC809L/M/J			0.4	V
	$V_{CC} = V_{TH}$ Min., $I_{SINK} = 1.2$ mA, ILC809R/S/T			0.3	
	V_{CC} > 1.4 V, I_{SINK} = 50 μ A, T_A = 0°C to 70°C			0.3	
	V_{CC} > 1.6 V, I_{SINK} = 50 μ A, T_A = -40°C to 85°C			0.3	
RESET Output Voltage, V _{OH}	1.8V < V _{CC} < V _{TH} Min., I _{SOURCE} = 150 μA	0.8 x V _{CC}			V
RESET Output Voltage, VoL	I _{SINK} = 3.2mA, ILC810L/M/J			0.4	V
	$I_{SINK} = 1.2mA$, ILC810R/S/T			0.3	

Pin Functions

	Pin Number		er	
Pin Name	ILC803	ILC809	ILC810	Description
GND	1	1	1	Ground Pin.
RESET	2	2	N/A	RESET goes low if V_{CC} falls below the reset threshold and remains asserted for one reset timeout period (140ms min.) after V_{CC} exceeds the reset threshold.
RESET	N/A	N/A	2	RESET goes high if V_{CC} falls below the reset threshold and remains asserted for one reset timeout period (140ms min.) after V_{CC} exceeds the reset threshold.
V _{CC}	4	3	3	Power supply input, 3 V, 3.3 V or 5 V.

Impala Linear Corporation

Circuit Description

Microprocessor Reset

The RESET pin is asserted whenever V_{cc} falls below the reset threshold voltage. The reset pin remains asserted for a period of 240ms after V_{cc} has risen above the reset threshold voltage. The reset function ensures the micro-processor is properly reset and powers up into a known condition after a power failure. RESET will remain valid with V_{cc} as low as 1.4V.

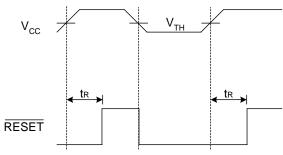


Figure 1: Timing Diagram

V_{cc} Transients

The ILC803, ILC809 and ILC810 are relatively immune to negative-going V_{cc} glitches below the reset threshold. Typically, a negative-going transient 125mV below the reset threshold with a duration of 50 μ s (25 μ s for ILC8_R/S/T) or less will not cause an unwanted reset.

Interfacing to Bi-directional Reset Pins

The ILC803/ILC809/ILC810 can interface with μ Ps with bidirectional reset pins by connecting a 4.7k Ω resistor in series with the ILC803/ILC809/ILC810 output and the mP reset pin. ILC803 connects directly with a single pull-up resistor (figure 2).

RESET Valid to 0V

A resistor can be added from the RESET pin to ground to ensure the RESET output remains low with V_{CC} down to 0V. A 100k Ω resistor connected from RESET to ground is recommended. The size of the resistor should be large enough to not load the RESET output and small enough to pull-down any stray leakage currents.

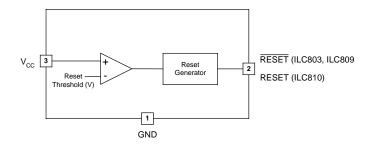
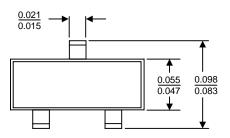
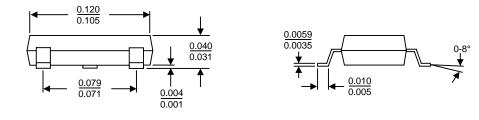



Figure 2: Reset valid to V_{CC}

Alternate Source Cross Reference Guide

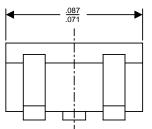
Industry P/N	ILC Direct
	Replacement
MAX803XYUR-T	ILC803YU
MAX809JEUR-T	ILC809JU
MAX809LEUR-T	ILC809LU
MAX809MEUR-T	ILC809MU
MAX809REUR-T	ILC809RU
MAX809SEUR-T	ILC809SU
MAX809TEUR-T	ILC809TU
MAX810JEUR-T	ILC810JU
MAX810LEUR-T	ILC810LU
MAX810MEUR-T	ILC810MU
MAX810REUR-T	ILC810RU
MAX810SEUR-T	ILC810SU
MAX810TEUR-T	ILC810TU

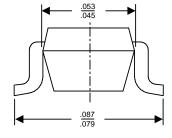

Device Markings Information

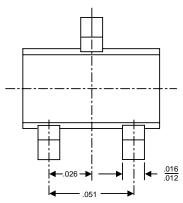

	SC-70 Case	SOT-23 Case
ILC803J	QJY	QJYY
ILC803L	QLY	QLYY
ILC803M	QMY	QMYY
ILC803R	QRY	QRYY
ILC803S	QSY	QSYY
ILC803T	QTY	QTYY
ILC809J	VJY	VJYY
ILC809L	VLY	VLYY
ILC809M	VMY	VMYY
ILC809R	VRY	VRYY
ILC809S	VSY	VSYY
ILC809T	VTY	VTYY
ILC810J	ZJY	ZJYY
ILC810L	ZCY	ZCYY
ILC810M	ZMY	ZMYY
ILC810R	ZRY	ZRYY
ILC810S	ZSY	ZSYY
ILC810T	ZTY	ZTYY
	Y-LOT CODE	YY-LOT CODE

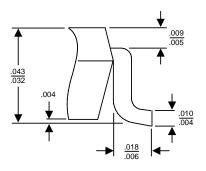
Packaging Information

U Package, 3-Pin SOT-23

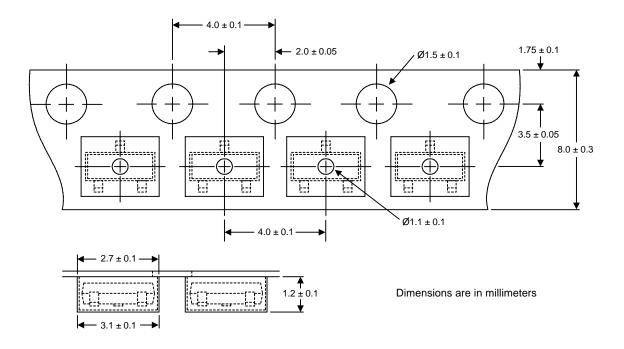

Dimensions are in inches






W Package, 3-Pin SC-70

Dimensions are in inches



Tape and Reel Information

Diagram applies to SOT-23 and SC-70

Devices sold by Impala Linear Corporation are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Impala Linear Corporation makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Impala Linear Corporation makes no warranty of merchantability or fitness for any purpose. Impala Linear Corporation reserves the right to discontinue production and change specifications and prices at any time and without notice.

This product is intended for use in normal commercial applications. Applications requiring an extended temperature range, unusual environmental requirements, or high reliability applications, such as military and aerospace, are specifically not recommended without additional processing by Impala Linear Corporation.

Impala Linear Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Impala Linear Corporation product. No other circuits, patents, licenses are implied. Life Support Policy

Impala Linear Corporation's products are not authorized for use as critical components in life support devices or systems.

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Impala Linear Corporation

(408) 574-3939

www.impalalinear.com